

Click Here

Grignard reagents (RMgX), prepared by reaction of organohalides with magnesium (Section 10.6), react with carbonyl compounds to yield alcohols in much the same way that hydride reducing agents do. Just as carbonyl reduction involves addition of a hydride ion nucleophile to the C=O bond, Grignard reaction involves addition of a carbon nucleophile (R+MgX). The nucleophilic addition reaction of Grignard reagents to carbonyl compounds has no direct counterpart in biological chemistry because organomagnesium compounds are too strongly basic to exist in an aqueous medium. Nevertheless, the reaction is worth understanding for two reasons. First, the reaction is an unusually broad and useful method of alcohol synthesis and demonstrates again the relative freedom with which chemists can operate in the laboratory. Second, the reaction does have an indirect biological counterpart, for well see in Chapter 23 that the addition of stabilized carbon nucleophiles to carbonyl compounds is used in almost all metabolic pathways as the major process for forming carbon-carbon bonds. As examples of their addition to carbonyl compounds, Grignard reagents react with formaldehyde, $\text{H}_2\text{C}=\text{O}$, to give primary alcohols, with aldehydes to give secondary alcohols, and with ketones to give tertiary alcohols. Esters react with Grignard reagents to yield tertiary alcohols in which two of the substituents bonded to the hydroxyl-bearing carbon have come from the Grignard reagent, just as LiAlH4 reduction of an ester adds two hydrogens. Carboxylic acids dont give addition products when treated directly with Grignard reagents because the acidic carboxyl hydrogen reacts with the basic Grignard reagent to yield a hydrocarbon and the magnesium salt of the acid. Carboxylic acids do, however, react with Grignard reagents to give ketones if they are first treated with i-Pr2NMGCl-LiCl, called the turbo-Hauser base, to form a complex and increase the electrophilicity of the carboxylate anion toward nucleophilic addition with a Grignard reagent. The Grignard reaction, although useful, does have limitations. One major problem is that a Grignard reagent can be prepared from an organohalide if other reactive functional groups are present in the same molecule. For example, a compound that is both an alkyl halide and a ketone cant form a Grignard reagent because the acidic RCO_2H , ROH, or RNH_2 hydrogen present in the same molecule would react with the basic Grignard reagent as rapidly as it forms. In general, Grignard reagents can be prepared from alkyl halides that contain the following functional groups (FG): As with the reduction of carbonyl compounds discussed in the previous section, well defer a detailed treatment of the Grignard reactions until Chapter 19. For the moment, its sufficient to note that Grignard reagents act as nucleophilic carbanions (R-) and that their addition to a carbonyl compound is analogous to the addition of hydride ion. The intermediate is an alkoxide ion, which is protonated by addition of H_3O^+ in a second step. **Worked Example 17.3** Using a Grignard Reaction to Synthesize an Alcohol How could you use the addition of a Grignard reagent to a ketone to synthesize 2-phenyl-2-butanol? **Strategy** Draw the product, and identify the three groups bonded to the alcohol carbon atom. One of the three will have come from the ketone. **Solution** 2-Phenyl-2-butanol has a methyl group, an ethyl group, and a phenyl group (C6H5) attached to the alcohol carbon atom. Thus, the possibilities are addition of ethylmagnesium bromide to acetophenone, addition of methylmagnesium bromide to propiophenone, and addition of phenylmagnesium bromide to 2-butanol. **Worked Example 17.4** Using a Grignard Reaction to Synthesize an Alcohol How could you use the reaction of a Grignard reagent with a carbonyl compound to synthesize 2-methyl-2-pentanol? **Strategy** Draw the product, and identify the three groups bonded to the alcohol carbon atom. If the three groups are all different, the starting carbonyl compound must be a ketone. If two of the three groups are identical, the starting carbonyl compound could be either a ketone or an ester. **Solution** In the present instance, the product is a tertiary alcohol with two methyl groups and one propyl group. Starting from a ketone, the possibilities are addition of methylmagnesium bromide to 2-pentanone and addition of propylmagnesium bromide to acetone. Starting from an ester, the only possibility is addition of propylmagnesium bromide to an ester of butanoic acid, such as methyl butanoate. **Problem 17-9** Show the products obtained from addition of methylmagnesium bromide to the following compounds: (a) Cyclopentane (b) Benzophenone (diphenyl ketone) (c) 3-Hexanone Problem 17-10 Use a Grignard reaction to prepare the following alcohols: (a) 2-Methyl-2-propanol (b) 1-Methylcyclohexanol (c) 3-Methyl-3-pentanol (d) 2-Phenyl-2-butanol (e) Benzyl alcohol (f) 4-Methyl-1-pentanol **Problem 17-11** Use the reaction of a Grignard reagent with a carbonyl compound to synthesize the following compound: **Last updated:** February 5th, 2025 | **All About The Reactions of Grignard Reagents** Grignard reagents are excellent carbon-based nucleophiles as well as strong bases. They will add to aldehydes and ketones to form alcohols (after a protonation step) They will add to esters to give tertiary alcohols. They will add to the less-substituted side of epoxides. Grignard reagents will also react with carbon dioxide (CO2) to give carboxylic acids (after acid workup). Grignard reagents will not perform SN2 reactions with alkyl halides. They are also not compatible with carboxylic acids or alcohols. **Table of Contents** 1. Reminder: Grignard Reagents Are Nucleophiles So far in this series we've introduced organometallic compounds and said that their carbons tend to be nucleophilic. We've learned how to make them from alkyl, alkenyl or aryl halides (along with some ways not to make them!) and saw that they are very strong bases. Most interesting about Grignards is that they are carbon-based nucleophiles and we can thus combine Grignard reagents with various electrophilic carbon species to form new carbon-carbon bonds. And since carbon-carbon bonds constitute the backbone of molecules in organic chemistry, it turns out that this class of reactions is very useful. As a matter of fact, it won its discoverer, Victor Grignard, the Nobel Prize for Chemistry back in 1912. For our purposes, the key carbon-based electrophiles that Grignard reagents react with are epoxides, aldehydes, ketones, and esters. Lets go through them in turn. 2. Addition of Grignard Reagents To Epoxides Epoxides (oxiranes if you are an IUPAC stickler) are 3-membered ring ethers which possess considerable ring strain. As we've seen, this ring strain makes them somewhat spring loaded toward nucleophiles, which will result in formation of a new bond to carbon and opening of the ring. Negatively charged nucleophiles (such as Grignards) tend to react with epoxides in a manner similar to the SN2 reaction: attack occurs at the least substituted carbon of the epoxide. Heres an example. Note the bonds that formed and broke here: we formed a new C-C bond (between carbons A and B), and broke a C-O bond (between carbon A and the oxygen). This resulted in a negatively charged oxygen (alkoxide); to produce final alcohol product, we typically quench the reaction with a source of acid, forming OH. Heres how the reaction works. The hard thing is to recognize that the nucleophile is the pair of electrons in the C-Mg bond; remember from previous posts that carbon is strongly nucleophilic because of its greater electronegativity as compared to magnesium. It might be helpful to imagine the Grignard reagent below as $\text{CH}_3\text{CH}_2\text{O}^-$. Other than that the reaction is fairly straightforward if you've seen an SN2 reaction before: we simultaneously form C-C and break C-O. Note that this reaction also forms an alkoxide. In order to obtain our neutral alcohol product at the end, we must perform second step: a workup (quench) with a source of acid. This is written a variety of ways H+, H_3O^+ , H_2O , or just acid workup. This step occurs after our key Grignard reaction, for what should be obvious reasons being strong bases, Grignard reagents are destroyed by acid. Another thing to keep in mind is stereochemistry of the epoxide. Consistent with an SN2 reaction, if the reaction occurs at a secondary carbon, we will observe inversion of configuration. 3. Reaction of Grignards With Aldehydes and Ketones A second class of important electrophiles that react with Grignards (and arguably THE most important class of electrophiles) is aldehydes and ketones. If you haven't covered the reactions of these functional groups yet, a short summary would be this: the carbonyl carbon is an electrophile, and when nucleophiles react at this carbon, its accompanied by cleavage of the C-O bond (hence the name). Together, these two steps are often referred to as Nucleophilic Acyl Substitution/Elimination. It does not occur in addition to aldehydes and ketones because the leaving group RO(-) is of comparable basicity to the negatively charged oxygen of the tetrahedral intermediate. [Note 1] But wait! Theres more! After Step 2, we have a new ketone. As we've seen before, Grignards will react quickly with ketones in yet another addition reaction [Step 3]. Here, as in Step 1, we form CO and break C-O. The result is a tertiary alkoxide (the conjugate base of a tertiary alcohol). [Wait, you might ask. If we just use one equivalent of Grignard reagent, is it possible to get the reaction to stop at the ketone stage? The short answer is no. [See Note 3 for the long answer] Finally, protonation of this tertiary alkoxide yields the tertiary alcohol (Step 4). Heres the graphical walkthrough. 6. Summary: Reactions of Grignard Reagents That does it for the key reactions of Grignard reagents you'll see most in Org 1 and Org 2 courses. In the next post well talk about yet another way to screw up formation of Grignard reagents, and it involves the reactions in this post. **Next Post:** Protecting Groups In Grignard Reagents Notes Note 1: Although alkoxides (RO-, the conjugate base of alcohols, pKa 16-18) are not on anyones list of Great Leaving Groups, they are some 25 orders of magnitude better leaving groups than hydrides (H, the conjugate base of hydrogen, pKa 40) and more than 30 orders of magnitude better than alkyl groups (R-, the conjugate base of alkanes, pKa 50). Thus, when the alkoxide intermediate is formed in Step 1, there is not any deep energetic penalty for the C-O bond to reform and for RO- to be expelled; after all, we are simply replacing a strong base (the O-) with one of comparable basicity. Note 2: Why are ketones more reactive towards Grignard reagents than esters? This requires understanding the phenomenon of pi donation. The lone pair on oxygen donates electron density into the carbonyl carbon. This is worthy of a separate post, but heres the bottom line: Note 3. Alas, no. Using 1 equivalent of Grignard will result in 0.5 equivalents of a tertiary alcohol and 0.5 equivalents of the starting ester. The reason why is that Step 2 [elimination] is quite fast! Once elimination occurs, we will have ketone in the presence of an ester. For interesting reasons [see Note 2] ketones are more reactive than esters toward Grignard reagents, which means they will be consumed more quickly. Quiz Yourself! Click to Flip! Become a MOC member to see the clickable quiz with answers on the back. Become a MOC member to see the clickable quiz with answers on the back. Become a MOC member to see the clickable quiz with answers on the back. **Back** **Advanced References and Further Reading:** The Grignard Reagents Dietmar Seydel's Organometallics 200928 (6), 1598-1605 DOI: 10.1021/om900088a historical overview on Grignard reagents by the late Prof. Dietmar Seydel (MIT), founding editor of the journal Organometallics. Secondary and Tertiary Alkylithium Compounds and Some Interconversion Reactions With them Henry Gilman, Fred W. Moore, and Ogden Bain. **Journal of the American Chemical Society** 1941, 63 (9), 2479-2482 DOI: 10.1021/aj01854a046 Prof. Henry Gilman (Iowa State) was a pioneer in organometallic chemistry in the first half of the 20th century. In this paper he describes the synthesis and reactivity of various alkylolithiums (n-butyllithium, s-butyllithium, isopropyllithium, and t-butyllithium). The synthesis is from the alkyl halide and lithium metal, as can be seen in the experimental section. **t-Butyllithium** Paul D. Bartlett, C. Gardner Swain, and Robert B. Woodward **Journal of the American Chemical Society** 1941, 63 (11), 3229-3230 DOI: 10.1021/ja01856a501 This is a communication from some legendary figures in organic chemistry and describes the preparation of t-butyllithium. 2-PHENYLPYRIDINE C. W. Evans, 18, 70 DOI: 10.1522/orgsyn.018.0070 The first step in this procedure is a preparation of phenyllithium from bromobenzene and lithium metal. Organic Syntheses is a reputable source of reproducible and independently tested synthetic organic procedures. The mechanism of the lithium halogen interchange reaction: a review of the literature Bailey, W. F.; Patricia, J. J. Organochem. Chem. 1988, 352 (1-2), 1-46 DOI: 10.1016/0022-328X(88)83017-1 In modern organic chemistry, organolithium reagents are rarely prepared from scratch (i.e. using Li metal), due to the ready availability of alkylolithium reagents from vendors (e.g. **Li**, **Li**, **Li**, etc.). Instead, these reagents can be used to form other organolithium species through a process known as lithium-halogen exchange. Whats Going on With These Lithium Reagents? Hand J. Reich **The Journal of Organic Chemistry** 2012, 77 (13), 5471-5491 DOI: 10.1021/jo300515p Prof. Hans Reich (U. Wisconsin-Madison) has spent his career studying the behavior of organolithium species, and this is an account of his research and the surprising findings he made. This is classic Physical Organic Chemistry. Share copy and redistribute the material in any medium format for any purpose, even commercially. Adapt, remix, transform, and build upon the material for any purpose, even commercially. The licensor cannot revoke these freedoms as long as you follow the license terms. Attribution You must give appropriate credit, provide a link to the license, and indicate if changes were made. You may do so in any reasonable manner, but not in any way that suggests the licensor endorses you or your use. ShareAlike If the material you remix, transform, or build upon the material, you must distribute your contributions under the same license as the original. No additional rights or permissions are necessary for your intended use. For example, other rights such as publicity, privacy, or moral rights may limit how you use the material. In this post, we will talk about the Grignard reaction a fundamental reaction in organic chemistry discovered by Victor Grignard in 1912 which gave him the Nobel prize award. The most common and important Grignard reaction is the one with compounds containing a carbonyl group. Grignard reagents react with aldehydes, ketones, and ester to form alcohols. Aldehydes and ketones form secondary and tertiary alcohols respectively, while esters are reacted with an excess Grignard reagent to form tertiary alcohols. Grignard reagents can also react with acid chlorides, anhydrides, nitriles and epoxides. These reactions are slightly different so lets first discuss the principle of the Grignard reaction. Grignard Reaction Mechanism Lets discuss the mechanism of the Grignard reaction by starting with aldehydes and ketones. The origin of the Grignard reaction is the great imbalance of electron distribution. On the one hand, we have the C-Mg non-metal-metal bond which is almost ionic, and on the other hand, we have the C=O bond where the electron density is on the oxygen and the carbon is highly electrophilic. When these two are mixed, the strongly Grignard reagent uses the C-Mg electron pair to form a bond to the carbon atom of the carbonyl. This nucleophilic attack pushes the electron pair of the carbonyl bond to the oxygen forming an alkoxide. The resulting alkoxide ion associated with Mg2+ and the halide is then neutralized by reacting with water or an acid. At this point, it is important to mention that Grignard reagents are very strong bases. The high electron density on the C-Mg carbon atom makes it not only a good nucleophile but also a strong base. This brings up a very important rule that you need to always follow when working with a Grignard reagent or any other organolithium. And that is making sure the reaction is carried out in dry conditions no trace of water should be present because it will react with the Grignard before the nucleophilic attack happens. This is really important for esters because the leaving group RO(-) is of comparable basicity to the negatively charged oxygen of the tetrahedral intermediate. [Note 1] But wait! Theres more! After Step 2, we have a new ketone. As we've seen before, Grignards will react quickly with ketones in yet another addition reaction [Step 3]. Here, as in Step 1, we form CO and break C-O. The result is a tertiary alkoxide (the conjugate base of a tertiary alcohol). [Wait, you might ask. If we just use one equivalent of Grignard reagent, is it possible to get the reaction to stop at the ketone stage? The short answer is no. [See Note 3 for the long answer] Finally, protonation of this tertiary alkoxide yields the tertiary alcohol (Step 4). Heres the graphical walkthrough. 6. Summary: Reactions of Grignard Reagents That does it for the key reactions of Grignard reagents you'll see most in Org 1 and Org 2 courses. In the next post well talk about yet another way to screw up formation of Grignard reagents, and it involves the reactions in this post. **Next Post:** Protecting Groups In Grignard Reagents Notes Note 1: Although alkoxides (RO-, the conjugate base of alcohols, pKa 16-18) are not on anyones list of Great Leaving Groups, they are some 25 orders of magnitude better leaving groups than hydrides (H, the conjugate base of hydrogen, pKa 40) and more than 30 orders of magnitude better than alkyl groups (R-, the conjugate base of alkanes, pKa 50). Thus, when the alkoxide intermediate is formed in Step 1, there is not any deep energetic penalty for the C-O bond to reform and for RO- to be expelled; after all, we are simply replacing a strong base (the O-) with one of comparable basicity. Note 2: Why are ketones more reactive towards Grignard reagents than esters? This requires understanding the phenomenon of pi donation. The lone pair on oxygen donates electron density into the carbonyl carbon. This is worthy of a separate post, but heres the bottom line: Note 3. Alas, no. Using 1 equivalent of Grignard will result in 0.5 equivalents of a tertiary alcohol and 0.5 equivalents of the starting ester. The reason why is that Step 2 [elimination] is quite fast! Once elimination occurs, we will have ketone in the presence of an ester. For interesting reasons [see Note 2] ketones are more reactive than esters toward Grignard reagents, which means they will be consumed more quickly. Quiz Yourself! Click to Flip! Become a MOC member to see the clickable quiz with answers on the back. Become a MOC member to see the clickable quiz with answers on the back. Become a MOC member to see the clickable quiz with answers on the back. **Back** **Advanced References and Further Reading:** The Grignard Reagents Dietmar Seydel's Organometallics 200928 (6), 1598-1605 DOI: 10.1021/om900088a historical overview on Grignard reagents by the late Prof. Dietmar Seydel (MIT), founding editor of the journal Organometallics. Secondary and Tertiary Alkylithium Compounds and Some Interconversion Reactions With them Henry Gilman, Fred W. Moore, and Ogden Bain. **Journal of the American Chemical Society** 1941, 63 (9), 2479-2482 DOI: 10.1021/aj01854a046 Prof. Henry Gilman (Iowa State) was a pioneer in organometallic chemistry in the first half of the 20th century. In this paper he describes the synthesis and reactivity of various alkylolithiums (n-butyllithium, s-butyllithium, isopropyllithium, and t-butyllithium). The synthesis is from the alkyl halide and lithium metal, as can be seen in the experimental section. **t-Butyllithium** Paul D. Bartlett, C. Gardner Swain, and Robert B. Woodward **Journal of the American Chemical Society** 1941, 63 (11), 3229-3230 DOI: 10.1021/ja01856a501 This is a communication from some legendary figures in organic chemistry and describes the preparation of t-butyllithium. 2-PHENYLPYRIDINE C. W. Evans, 18, 70 DOI: 10.1522/orgsyn.018.0070 The first step in this procedure is a preparation of phenyllithium from bromobenzene and lithium metal. Organic Syntheses is a reputable source of reproducible and independently tested synthetic organic procedures. The mechanism of the lithium halogen interchange reaction: a review of the literature Bailey, W. F.; Patricia, J. J. Organochem. Chem. 1988, 352 (1-2), 1-46 DOI: 10.1016/0022-328X(88)83017-1 In modern organic chemistry, organolithium reagents are rarely prepared from scratch (i.e. using Li metal), due to the ready availability of alkylolithium reagents from vendors (e.g. **Li**, **Li**, **Li**, etc.). Instead, these reagents can be used to form other organolithium species through a process known as lithium-halogen exchange. Whats Going on With These Lithium Reagents? Hand J. Reich **The Journal of Organic Chemistry** 2012, 77 (13), 5471-5491 DOI: 10.1021/jo300515p Prof. Hans Reich (U. Wisconsin-Madison) has spent his career studying the behavior of organolithium species, and this is an account of his research and the surprising findings he made. This is classic Physical Organic Chemistry. Share copy and redistribute the material in any medium format for any purpose, even commercially. Adapt, remix, transform, and build upon the material for any purpose, even commercially. The licensor cannot revoke these freedoms as long as you follow the license terms. Attribution You must give appropriate credit, provide a link to the license, and indicate if changes were made. You may do so in any reasonable manner, but not in any way that suggests the licensor endorses you or your use. ShareAlike If the material you remix, transform, or build upon the material, you must distribute your contributions under the same license as the original. No additional rights or permissions are necessary for your intended use. For example, other rights such as publicity, privacy, or moral rights may limit how you use the material. In this post, we will talk about the Grignard reaction a fundamental reaction in organic chemistry discovered by Victor Grignard in 1912 which gave him the Nobel prize award. The most common and important Grignard reaction is the one with compounds containing a carbonyl group. Grignard Reagents react with aldehydes, ketones, and ester to form alcohols. Aldehydes and ketones form secondary and tertiary alcohols respectively, while esters are reacted with an excess Grignard reagent to form tertiary alcohols. Grignard reagents can also react with acid chlorides, anhydrides, nitriles and epoxides. These reactions are slightly different so lets first discuss the principle of the Grignard reaction. Grignard Reaction Mechanism Lets discuss the mechanism of the Grignard reaction by starting with aldehydes and ketones. The origin of the Grignard reaction is the great imbalance of electron distribution. On the one hand, we have the C-Mg non-metal-metal bond which is almost ionic, and on the other hand, we have the C=O bond where the electron density is on the oxygen and the carbon is highly electrophilic. When these two are mixed, the strongly Grignard reagent uses the C-Mg electron pair to form a bond to the carbon atom of the carbonyl. This nucleophilic attack pushes the electron pair of the carbonyl bond to the oxygen forming an alkoxide. The resulting alkoxide ion associated with Mg2+ and the halide is then neutralized by reacting with water or an acid. At this point, it is important to mention that Grignard reagents are very strong bases. The high electron density on the C-Mg carbon atom makes it not only a good nucleophile but also a strong base. This brings up a very important rule that you need to always follow when working with a Grignard reagent or any other organolithium. And that is making sure the reaction is carried out in dry conditions no trace of water should be present because it will react with the Grignard before the nucleophilic attack happens. This is really important for esters because the leaving group RO(-) is of comparable basicity to the negatively charged oxygen of the tetrahedral intermediate. [Note 1] But wait! Theres more! After Step 2, we have a new ketone. As we've seen before, Grignards will react quickly with ketones in yet another addition reaction [Step 3]. Here, as in Step 1, we form CO and break C-O. The result is a tertiary alkoxide (the conjugate base of a tertiary alcohol). [Wait, you might ask. If we just use one equivalent of Grignard reagent, is it possible to get the reaction to stop at the ketone stage? The short answer is no. [See Note 3 for the long answer] Finally, protonation of this tertiary alkoxide yields the tertiary alcohol (Step 4). Heres the graphical walkthrough. 6. Summary: Reactions of Grignard Reagents That does it for the key reactions of Grignard reagents you'll see most in Org 1 and Org 2 courses. In the next post well talk about yet another way to screw up formation of Grignard reagents, and it involves the reactions in this post. **Next Post:** Protecting Groups In Grignard Reagents Notes Note 1: Although alkoxides (RO-, the conjugate base of alcohols, pKa 16-18) are not on anyones list of Great Leaving Groups, they are some 25 orders of magnitude better leaving groups than hydrides (H, the conjugate base of hydrogen, pKa 40) and more than 30 orders of magnitude better than alkyl groups (R-, the conjugate base of alkanes, pKa 50). Thus, when the alkoxide intermediate is formed in Step 1, there is not any deep energetic penalty for the C-O bond to reform and for RO- to be expelled; after all, we are simply replacing a strong base (the O-) with one of comparable basicity. Note 2: Why are ketones more reactive towards Grignard reagents than esters? This requires understanding the phenomenon of pi donation. The lone pair on oxygen donates electron density into the carbonyl carbon. This is worthy of a separate post, but heres the bottom line: Note 3. Alas, no. Using 1 equivalent of Grignard will result in 0.5 equivalents of a tertiary alcohol and 0.5 equivalents of the starting ester. The reason why is that Step 2 [elimination] is quite fast! Once elimination occurs, we will have ketone in the presence of an ester. For interesting reasons [see Note 2] ketones are more reactive than esters toward Grignard reagents, which means they will be consumed more quickly. Quiz Yourself! Click to Flip! Become a MOC member to see the clickable quiz with answers on the back. Become a MOC member to see the clickable quiz with answers on the back. Become a MOC member to see the clickable quiz with answers on the back. **Back** **Advanced References and Further Reading:** The Grignard Reagents Dietmar Seydel's Organometallics 200928 (6), 1598-1605 DOI: 10.1021/om900088a historical overview on Grignard reagents by the late Prof. Dietmar Seydel (MIT), founding editor of the journal Organometallics. Secondary and Tertiary Alkylithium Compounds and Some Interconversion Reactions With them Henry Gilman, Fred W. Moore, and Ogden Bain. **Journal of the American Chemical Society** 1941, 63 (9), 2479-2482 DOI: 10.1021/aj01854a046 Prof. Henry Gilman (Iowa State) was a pioneer in organometallic chemistry in the first half of the 20th century. In this paper he describes the synthesis and reactivity of various alkylolithiums (n-butyllithium, s-butyllithium, isopropyllithium, and t-butyllithium). The synthesis is from the alkyl halide and lithium metal, as can be seen in the experimental section. **t-Butyllithium** Paul D. Bartlett, C. Gardner Swain, and Robert B. Woodward **Journal of the American Chemical Society** 1941, 63 (11), 3229-3230 DOI: 10.1021/ja01856a501 This is a communication from some legendary figures in organic chemistry and describes the preparation of t-butyllithium. 2-PHENYLPYRIDINE C. W. Evans, 18, 70 DOI: 10.1522/orgsyn.018.0070 The first step in this procedure is a preparation of phenyllithium from bromobenzene and lithium metal. Organic Syntheses is a reputable source of reproducible and independently tested synthetic organic procedures. The mechanism of the lithium halogen interchange reaction: a review of the literature Bailey, W. F.; Patricia, J. J. Organochem. Chem. 1988, 352 (1-2), 1-46 DOI: 10.1016/0022-328X(88)83017-1 In modern organic chemistry, organolithium reagents are rarely prepared from scratch (i.e. using Li metal), due to the ready availability of alkylolithium reagents from vendors (e.g. **Li**, **Li**, **Li**, etc.). Instead, these reagents can be used to form other organolithium species through a process known as lithium-halogen exchange. Whats Going on With These Lithium Reagents? Hand J. Reich **The Journal**